NetworksPositional

Construct your individual Transformer from scratch using Pytorch Multi-Head Attention Position-wise Feed-Forward Networks Positional Encoding Encoder Layer Decoder Layer Transformer Model Preparing Sample Data Training the Model References Attention is all you would like

Constructing a Transformer model step-by-step in PytorchMerging all of it together:class Transformer(nn.Module):def __init__(self, src_vocab_size, tgt_vocab_size, d_model, num_heads, num_layers, d_ff, max_seq_length, dropout):super(Transformer, self).__init__()self.encoder_embedding = nn.Embedding(src_vocab_size, d_model)self.decoder_embedding = nn.Embedding(tgt_vocab_size, d_model)self.positional_encoding = PositionalEncoding(d_model, max_seq_length)self.encoder_layers = nn.ModuleList()self.decoder_layers =...

Recent posts

Popular categories

ASK ANA