Jorge Torres, Co-founder & CEO of MindsDB – Interview Series


Jorge Torres, is the Co-founder & CEO of MindsDB, a platform that helps anyone use the ability of machine learning to ask predictive questions of their data and receive accurate answers from it. MindsDB can also be a graduate of YCombinator’s recent Winter 2020 batch and was recently recognized as considered one of America’s most promising AI firms by Forbes.

What initially attracted you to machine learning?

It’s an interesting story. In 2008, I used to be living and dealing in Berkeley for a startup called Couchsurfing and I saw this class, (cs188- Introduction to AI). Though I used to be not affiliated with the university on the time, I asked the prof. John DeNero if I could sit in for a category and he allowed me to. This professor was good, and he really made everyone fall in love with the subject. It was the most effective thing that happened to me. I used to be amazed that computers could learn to resolve an issue, I spotted this was moving fast and decided to make it my profession.

There are a number of generational defining events in technology that only come around a number of times in a single’s lifetime. I used to be fortunate enough to be witness to the birth of the Web but was far too young to be anything but a passive observer. I think Machine Learning to be that next generational event, and I desired to be an element of it in some meaningful method to drive forward the technology and the way in which we use it.

MindsDB began at UC Berkeley in 2018, could you share some insight from these early days?

UC Berkeley is considered one of the world’s great research institutions and has a history of making and supporting open-source software, and we thought there was no higher place to begin MindsDB. Our values were aligned, they offered us our first check through the UC Berkeley Skydeck Accelerator and the remaining they are saying is History.

The early days weren’t unlike many startups within the Bay region – Three people working long hours on something all of them believed in, but had only a small likelihood of success. The one difference is fairly than working in a dusty garage in Palo Alto we were within the relative comfort within the Skydeck Penthouse co-working space (rent free).

I think that there is big power in data. The more an organization has, the more they’re capable of propel their businesses forward. But only in the event that they’re capable of get meaningful insights from it.

In the autumn of 2017, my best friend Adam Carrigan (COO) and I got here to the conclusion that too many businesses faced limitations when it got here to extracting meaningful information from their data. They realized that considered one of the largest limitations was in how lots of these businesses were severely underutilizing the ability of artificial intelligence. We believed that machine learning could make data, and the intelligence it may provide, accessible to everyone. That’s why we designed a platform that may allow anyone to make use of the ability of machine learning to ask predictive questions of their data and receive accurate answers from it.

We call this platform MindsDB and are focused on continuing to make it incredibly easy for developers to rapidly create the following wave of AI-centered applications that may transform the way in which we live and work and for businesses to extract information from their data.

Why did MindsDB give attention to solving the issue of being data centric versus machine learning centric?

If you happen to take a look at the overwhelming majority of research in AI, a big percentage comes from academic institutions. ML has historically been model-centric because that is where research institutions can add perceived value; more research improves models or creates recent ones thus producing higher results. Being data-centric, alternatively, adding higher quality/more relevant data to an existing approach isn’t easily publishable (the important thing KPI for researchers).

Nonetheless, the overwhelming majority of applied machine learning problems today profit way more from improved data than from improved models. This also aligns well with our mission to democratize machine learning, the overwhelming majority of individuals outside of the Ml space don’t know very much about ML, but they sure do know rather a lot about their data.

We saw that there have been two forms of firms, on the one hand firms with data within the database, on the opposite, firms with that had not discovered databases yet, we realized that if an organization was on the group of databases, their data maturity had already put them on the precise track to give you the option to actually apply machine learning, whereas firms that had not discovered databases yet, had an extended method to go still, so we focused on providing value for those that would actually extract it.

How does MindsDB approach modeling and deployment in plain SQL?

We create representations of models as tables that might be queried, so effectively we remove the concept of ‘deployment’ out of the image. While you type on a database CREATE VIEW that view is live right when the command is finished processing, same thing while you do CREATE MODEL in mindsdb.

People love MindsDB as a consequence of the simplification you’ve dropped at the ML-Ops lifecycle, why is simplifying machine learning deployment so essential?

People find it irresistible since it abstracts unnecessary ETL pipelines, so less things to take care of. Our focus is to get users to extract the worth of machine learning, by not considering of maintaining the ML infrastructure in the event that they already maintain data infrastructure.

What are among the benefits and risks of being an open-source start-up versus a conventional start-up?

An Open Source project can start with just an idea, and folks will make it easier to construct it along the way in which, on the close source approach you have got to begin with the identical assumptions but you higher be right because nobody goes to make it easier to improve your product (at the very least not in the identical volume as in open source), consider open source as a collaborative product user fit approach.

MindsDB recently raised a $16.5M Series A investment from Benchmark, why is Benchmark the proper investor fit and the way does their vision match yours?

Benchmark has an impeccable record in our industry, Chetan has helped firms like mongodb, elastic, airbyte turn out to be the world leaders of their realms. We imagine there is no such thing as a higher fit for MindsDB than Chetan and Benchmark capital.


What are your thoughts on this topic?
Let us know in the comments below.


Notify of
Newest Most Voted
Inline Feedbacks
View all comments
binance-ны алдым-ау бонусы
binance-ны алдым-ау бонусы
9 months ago

Thank you for your sharing. I am worried that I lack creative ideas. It is your article that makes me full of hope. Thank you. But, I have a question, can you help me?

5 months ago

I am currently writing a paper and a bug appeared in the paper. I found what I wanted from your article. Thank you very much. Your article gave me a lot of inspiration. But hope you can explain your point in more detail because I have some questions, thank you. 20bet

coffee shop ambience
coffee shop ambience
4 months ago

coffee shop ambience

Kısmet Bağlılığını Çözmek İçin Dua
Kısmet Bağlılığını Çözmek İçin Dua
16 days ago

yapılan büyüyü bozmak için

Share this article

Recent posts

Grey Wolf Optimizer — How It Can Be Used with Computer Vision

As a bonus, get the code to use feature extraction anywhereImage created by DALL·E 3 based on the prompt “Draw a pack of futuristic...

Artificial intelligence corporations flock to ‘AI representative city Gwangju’

Artificial intelligence (AI) specialized corporations are flocking to Gwangju, the representative city of artificial intelligence in Korea. Gwangju City (Mayor Kang Ki-jeong) held a gathering...

The Pillars of Responsible AI: Navigating Ethical Frameworks and Accountability in an AI-Driven World

Within the rapidly evolving realm of recent technology, the concept of ‘Responsible AI’ has surfaced to handle and mitigate the problems arising from AI...

Ministry of Culture-GIST, MOU to ascertain AI overseas news evaluation platform

The Ministry of Culture, Sports and Tourism (Minister Yoo In-chon) announced on the fifteenth that it could sign a business agreement with the Gwangju...

“Samsung significantly strengthens headset secret development team to reply to Apple’s ‘Vision Pro’”

A report has emerged that Samsung Electronics is significantly increasing the dimensions of its internal XR (mixed reality) headset development team following the launch...

Recent comments

бнанс рестраця для США on Model Evaluation in Time Series Forecasting
Bonus Pendaftaran Binance on Meet Our Fleet
Créer un compte gratuit on About Me — How I give AI artists a hand
To tài khon binance on China completely blocks ‘Chat GPT’
Regístrese para obtener 100 USDT on Reducing bias and improving safety in DALL·E 2
crystal teeth whitening on What babies can teach AI
binance referral bonus on DALL·E API now available in public beta prihlásení on Neural Networks and Life
Büyü Yapılmışsa Nasıl Bozulur on Introduction to PyTorch: from training loop to prediction
yıldızname on OpenAI Function Calling
Kısmet Bağlılığını Çözmek İçin Dua on Examining Flights within the U.S. with AWS and Power BI
Kısmet Bağlılığını Çözmek İçin Dua on How Meta’s AI Generates Music Based on a Reference Melody
Kısmet Bağlılığını Çözmek İçin Dua on ‘이루다’의 스캐터랩, 기업용 AI 시장에 도전장
uçak oyunu bahis on Thanks!
para kazandıran uçak oyunu on Make Machine Learning Work for You
medyum on Teaching with AI
aviator oyunu oyna on Machine Learning for Beginners !
yıldızname on Final DXA-nation
adet kanı büyüsü on ‘Fake ChatGPT’ app on the App Store
Eşini Eve Bağlamak İçin Dua on LLMs and the Emerging ML Tech Stack
aviator oyunu oyna on AI as Artist’s Augmentation
Büyü Yapılmışsa Nasıl Bozulur on Some Guy Is Trying To Turn $100 Into $100,000 With ChatGPT
Eşini Eve Bağlamak İçin Dua on Latest embedding models and API updates
Kısmet Bağlılığını Çözmek İçin Dua on Jorge Torres, Co-founder & CEO of MindsDB – Interview Series
gideni geri getiren büyü on Joining the battle against health care bias
uçak oyunu bahis on A faster method to teach a robot
uçak oyunu bahis on Introducing the GPT Store
para kazandıran uçak oyunu on Upgrading AI-powered travel products to first-class
para kazandıran uçak oyunu on 10 Best AI Scheduling Assistants (September 2023)
aviator oyunu oyna on 🤗Hugging Face Transformers Agent
Kısmet Bağlılığını Çözmek İçin Dua on Time Series Prediction with Transformers
para kazandıran uçak oyunu on How China is regulating robotaxis
bağlanma büyüsü on MLflow on Cloud
para kazandıran uçak oyunu on Can The 2024 US Elections Leverage Generative AI?
Canbar Büyüsü on The reverse imitation game
bağlanma büyüsü on The NYU AI School Returns Summer 2023
para kazandıran uçak oyunu on Beyond ChatGPT; AI Agent: A Recent World of Staff
Büyü Yapılmışsa Nasıl Bozulur on The Murky World of AI and Copyright
gideni geri getiren büyü on ‘Midjourney 5.2’ creates magical images
Büyü Yapılmışsa Nasıl Bozulur on Microsoft launches the brand new Bing, with ChatGPT inbuilt
gideni geri getiren büyü on MemCon 2023: We’ll Be There — Will You?
adet kanı büyüsü on Meet the Fellow: Umang Bhatt
aviator oyunu oyna on Meet the Fellow: Umang Bhatt
abrir uma conta na binance on The reverse imitation game
código de indicac~ao binance on Neural Networks and Life
Larry Devin Vaughn Wall on How China is regulating robotaxis
Jon Aron Devon Bond on How China is regulating robotaxis
otvorenie úctu na binance on Evolution of Blockchain by DLC
puravive reviews consumer reports on AI-Driven Platform Could Streamline Drug Development
puravive reviews consumer reports on How OpenAI is approaching 2024 worldwide elections Registrácia on DALL·E now available in beta